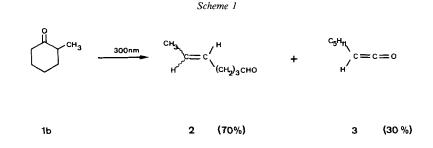
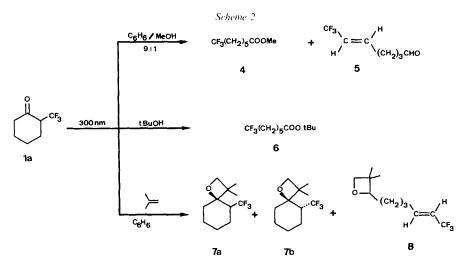
74. Photochemistry of 2-(Trifluoromethyl)cyclohexanone

by Christoph Semisch¹) and Paul Margaretha*

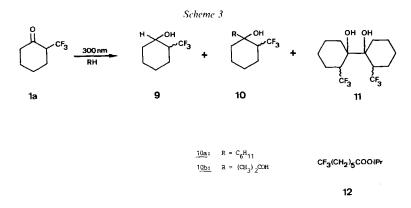
Institut für Organische Chemie, Universität, D-2000 Hamburg 13


(16.I.84)

Summary


The photochemical behaviour of the title compound 1a is compared to that of the non-fluorinated parent ketone 2-methylcyclohexanone (1b). Substitution of the CH₃-group on C(2) by a trifluoromethyl group strongly enhances 2H- and RH-reduction product formation in cyclohexane or 2-propanol and oxetane formation in the presence of 2-methylpropene as olefinic component. Under all these conditions 1b exclusively undergoes *a*-cleavage, a process observed for 1a only in non-reducing solvents as benzene or *tert*-butyl alcohol.

We have recently shown that irradiation of a-fluoroketones in 2-propanol selectively affords the parent carbonyl compounds and that in non-reducing solvents as benzene or t-BuOH the fluoro-ketone and its parent compound exhibit a similar behaviour on excitation [1]. We now report results on comparative studies of light-induced reactions of 2-(trifluoromethyl)cyclohexanone (1a) and 2-methylcyclohexanone (1b) in these solvents.


Irradiation ($\lambda = 300$ nm) of **1b** in benzene or cyclohexane is known to afford the *a*-cleavage products 5-heptenal (**2**) and pentylketene (**3**) – trapped by alcohols to give esters – in a 2.3:1 ratio [2][3]. The quantum yields for product formation are 0.29 and 0.13, respectively [**4**]. No additional reduction products have been detected in 2-propanol [5] and no oxetanes were formed when the benzene solution of **1b** was saturated with 2-methylpropene (Scheme 1).

¹) Part of the planned doctoral thesis, University of Hamburg.

Irradiation ($\lambda = 300$ nm) of **1a** in benzene containing 10% MeOH afforded methyl 7,7,7-trifluoroheptanoate (**4**) and 7,7,7-trifluoro-5-heptenal (**5**) – this latter compound as a mixture of (*E*)- and (*Z*)-isomers – in a 2:1 ratio. Prolonged irradiation leads to destruction of the aldehyde, *e.g.* complete conversion of **1a** in *t*-BuOH affords *tert*-butyl 7,7,7-trifluoroheptanoate (**6**) selectively. Similarly, no products were detected by GC on prolonged irradiation of **1a** in pure benzene. On the other hand, when this solution was saturated with 2-methylpropene the three oxetanes **7a**, **7b** and **8** were formed in a 4:5:1 ratio (*Scheme 2*).

In contrast, irradiation of 1a in cyclohexane afforded *cis*- and *trans*-2-(trifluoromethyl)cyclohexanol (9), the *RH*-reduction product 10a and pinacol 11. No additional products were detected when using $C_6H_{12}/C_6H_6/MeOH$ 8:1:1 as solvent. Similarly, in 2-propanol 9, 10b and 11 represent the major products, only 2% of the isopropyl ester 12 being formed (*Scheme 3*). The spectral data of the products are summarized in *Table 1* and the relative rates for the photodecomposition of 1a and 1b as well as the product distribution in the different solvents are given in *Table 2*.

Compound	IR (CCl ₄)	¹ H-NMR (CDCl ₃)	MS
4	1730	-	198 (M ⁺)
	1135		74
5 ^a)	-	9.75 (t, 1H); 6.35 (m, 1H);	166 (M ⁺)
		5.70 (m, 1H); 2.5–1.4 (m, 6H)	44
6	1730	2.31 (t, 2H); 2.15 (m, 2H);	225 ($M^+ - CH_3$)
	1130	1.7-1.5 (m, 6H); 1.40 (s, 9H)	57
7 a ^b)	1150	4.20 and 4.10 (AB , $J = 5.4$);	222 (M ⁺)
		3.10 (m, 1H); 2.4-1.4 (m, 8H);	56
		1.30 (s, 6H)	
7b ^b)	1155 4.30 and 3.82 (AB, $J = 5.4$);	4.30 and 3.82 (AB, $J = 5.4$);	222 (M ⁺)
		2.80 (m, 1H); 2.3–1.2 (m, 8H);	56
		1.40 (s, 3H); 1.05 (s, 3H)	
8 ^a)	_	6.40 (m, 1H); 5.60 (m, 1H);	192 $(M^+ - CH_2O)$
		4.40 (dd, 1H); 4.30 and 4.10	56
		(AB, J = 5.4); 2.15 (m, 2H);	
		1.8-1.3 (m, 4H); 1.25 (s, 3H);	
		1.20 (s, 3H)	
9	3400	4.35 (m, $1H_{eq}$) and 3.75 (m, $1H_{ax}$);	$168 (M^+)$
	1130	2.1-1.2 (m, 10H)	57
10a	-		250 (M ⁺)
104			167
10ь	3650	-	208 (M ⁺)
	3550		59
	1155		
11		-	334 (M ⁺)
			167.
12	1730	5.02 (m, 1H); 2.30 (t, 2H);	$211 (M^+ - CH_3)$
	1140	2.10 (m, 2H); 1.7-1.4 (m, 6H);	43
		1.30 (d, J = 6.5, 6H)	

Table 1. Spectroscopic Data of Photoproducts from 1a

^a) Major compound is the (E)-isomer.

^b) Structural assignment ambiguous.

Table 2. Rates of Conversion of 1a and 1b and Product Ratios (GC) for 1a in Different Solvents

Solvent	k _{rel}		Product distribution (%)	
	1a	1b	for 1a	
$\overline{C_6 H_6^a}$	0.51	$1 (\Phi = 0.5 [2])$	4 (70), 5 (30) ^b)	
t-BuOH ^c)	1.20	1.25	$6 (> 70)^d$	
C ₆ H ₁₂	1.75	1.02	9 (50), 10a (35), 11 (15)	
i-PrOH	1.60	1.05	9 (70), 10b (15), 11 (13), 12 (2)	

^d) At complete conversion of **1a**.

Comparison of the *a*-cleavage reaction of 1a and 1b shows that this process is only half as efficient for 1a in benzene but of equal efficiency for both compounds in *t*-BuOH, and that the enal-to-ketene product ratios are inverted. These results reflect the

difference in behaviour of the acyl alkyl diradical intermediates (CF₃CHR vs. CH₃CHR) regarding recombination to starting material and rearrangement to products [6].

Substitution of the CH₃-group on C(2) by a trifluoromethyl group reduces the potential of the ketone by 0.3 V [7], and therefore **1a** becomes a better oxidizing agent in its excited state as compared to **1b**. This feature is reflected in the ease of photoreduction of **1a** in cyclohexane or 2-propanol, solvents wherein **1b** again undergoes exclusively *a*-cleavage. In contrast to 2-fluorocyclohexanone the anion radical of **1a** does not eliminate F^- , and therefore the same product pattern is formed in 2-propanol as in C_6H_{12} . As for the oxetane forming [2 + 2] photocycloaddition, the CF₃-group on C(2) apparently exerts a similar effect as does fluorine itself [1][8]. Here again the *a*-cleavage for **1b** occurs efficiently enough as to prevent any bimolecular reaction.

Financial support by Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie is gratefully acknowledged.

Experimental Part

General. Absorptions in the IR spectra are given in cm⁻¹. Chemical shifts in the 400-MHz ¹H-NMR spectra are given in ppm relative to TMS (= 0 ppm) as internal standard. The GC/MS analyses were carried out on a Varian MAT CH7 instrument using a 2-m column of 3% SE30 on 80/100 Supplecoport. Prep. GC was performed on 4-m columns of a) 10% SE30 and b) 10% FFAP on Chromosorb G-AW-DMCS.

Starting Materials. 2-Methylcyclohexanone (1b) was purchased from Merck AG and 2-(trifluoro-methyl) aniline and 2-methylpropene from Fluka AG. All solvents used were of spectral grade.

2-(Trifluoromethyl)cyclohexanone (1a). A solution of 16.2 g (0.1 mol) 2-(trifluoromethyl)phenol (prepared in 35% yield by diazotization of 2-(trifluoromethyl)aniline and subsequent hydrolysis [9]) in 100 ml MeOH was hydrogenated at 150 atmospheres in the presence of 4.5 g Raney-Ni for 24 h at 170° [10]. After removal of the catalyst by filtration and distillation of the solvent through a Vigreux column the residue was dissolved in 100 ml CH₂Cl₂ and extracted $3\times$ with 100 ml $2\aleph$ NaOH. The org. phase was washed with H₂O and dried over MgSO₄. Distillation affords 4.5 g of a 7:1 mixture of 2-(trifluoromethyl)cyclohexanol (9) and 2-methylcyclohexanol, b.p. 55–60°/0.1 mm. This mixture of alcohols was added to a suspension of 8.5 g pyridiniumchlorochromate (PCC) in 60 ml CH₂Cl₂ and stirred at r.t. for 12 h. After addition of 50 ml pentane, filtration of the PCC over SiO₂ and evaporation of the solvent, the residue was chromatographed (SiO₂, CH₂Cl₂) to afford 2.3 g 1a (14%), b.p. 73–75°/12 mm ([11]: 90–92°/30 mm).

Photolyses. Irradiations ($\lambda = 300$ nm) were performed in a *Rayonet RPR-100* photoreactor (lamp *a*) or with a 400 W medium pressure Hg-lamp and a *Pyrex* filter (lamp *b*). For analytical purposes degassed solutions of **1a** or **1b** (0.1m) were irradiated in a *merry-go-round* apparatus. The degrees of conversion were monitored by GC with undecane as internal standard.

In Benzene/MeOH 9:1. A solution of 33 mg 1a in 2 ml solvent was irradiated for 16 h (lamp a). After removal of the solvent the residue was chromatographed (SiO₂, CH₂Cl₂) to afford a 1:2:2 mixture of 4/1a/5.

In t-BuOH/benzene 95:5. A solution of 33 mg 1a in 2 ml solvent was irradiated for 14 h (lamp a). tert-Butyl 7,7,7-trifluoroheptanoate 6 was isolated by prep. GC (column a, 30' at 60°, $3^{\circ}/\min \rightarrow 140^{\circ}$).

In Benzene Saturated with 2-Methylpropene. A solution of 33 mg 1a in 20 ml solvent was irradiated for 48 h (lamp b). ¹H-NMR and GC/MS analysis of the residue after evaporation of the solvent indicates the formation of *cis*- and *trans*-5-trifluoromethyl-3,3-dimethyl-1-oxaspiro[3.5]nonane 7a and 7b and of oxetane 8 in a 4:5:1 ratio. Chromatography (SiO₂, MeCl₂) affords 140 mg (30%) of the main component 7b. Prep. GC (co-lumn b, isothermal 100°) allows to isolate each oxetane separately.

In Cyclohexane. A solution of 165 mg 1a in 10 ml solvent was irradiated for 12 h (lamp b). Alcohols 9 and 10a were isolated by prep. GC (column a, 30' at 60°, 3°/min \rightarrow 140°). Under these conditions, 11 could not be isolated.

In 2-Propanol. Irradiation- and prep. GC conditions as above for cyclohexane affords alcohol 9, ester 12 and alcohol 10b. Under these conditions 11 could not be obtained.

REFERENCES

- [1] K. Reinholdt & P. Margaretha, Helv. Chim. Acta 66, 2534 (1983).
- [2] P.J. Wagner & R.W. Spoerke, J. Am. Chem. Soc. 91, 4437 (1969).
- [3] J.D. Coyle, J. Chem. Soc. B 1971, 1736.
- [4] W.B. Hammond & T.S. Yeung, Tetrahedron Lett. 1975, 1169.
- [5] J.C. Micheau, N. Paillous & A. Lattes, Tetrahedron Lett. 1972, 637.
- [6] D.S. Weiss, in 'Organic Photochemistry', Vol. 5, ed. A. Padwa, M. Dekker, New York, 1981, p. 347.
- [7] K.M.C. Davis, P.R. Hammond & M.E. Peower, Trans. Faraday Soc. 61, 1516 (1965).
- [8] G. VoThi & P. Margaretha, Helv. Chim. Acta 59, 2236 (1976).
- [9] 'Organikum', 15th edn., VEB Deutscher Verlag der Wissenschaften, Berlin, 1977, p. 660.
- [10] I. M. Zalesskaya, A. N. Blakitnyi, E. P. Saenko, Y. A. Fialkow & L. M. Yagupolskii, J. Org. Chem. USSR 16, 1031 (1980).
- [11] D. Cantacuzene, C. Wakselman & R. Dorme, J. Chem. Soc., Perkin Trans. 1 1977, 1365.